首页> 外文OA文献 >Gradient Drift Instability Growth Rates from Global-Scale Modeling of the Polar Ionosphere
【2h】

Gradient Drift Instability Growth Rates from Global-Scale Modeling of the Polar Ionosphere

机译:极地电离层全球规模建模的梯度漂移不稳定性增长率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The winter polar ionosphere, under southward interplanetary magnetic field (IMF) conditions, experiences irregularity development leading to consequences such as scintillation on transionospheric communication links. These irregularities are associated with antisunward convecting polar ionospheric patches. The gradient drift instability (GDI) has been considered a primary candidate for the generation of these irregularities, or at least the long-wavelength energy source of the irregularity-wave cascade process. The Utah State University time-dependent ionospheric model (TDIM) enables the polar cap ionosphere and its patches to be modeled on a large scale in a time-evolving manner. Hence, at each point in space and time, the TDIM has adequate information to compute the growth rate of the gradient drift instability. The spatial gradients are based on a 92 × 92 km TDIM grid resolution, while the time resolution can be as short as 30 s. In this study, we present results of the GDI linear growth rate calculations for the F region. For a first time, snapshots of the instantaneous GDI linear growth rates over the polar ionosphere are shown. These show, in part, the correlation of the GDI with polar cap patches. Then we present the time evolution of the linear growth rate as plasma flux tubes convect. It is shown that a flux tube of plasma can, in fact, change between being unstable and stable to the GDI as the plasma convection pattern switches in response to changing IMF conditions. These convective results are essential information if an assessment of whether or not a plasma flux tube is stable to the gradient drift mechanism is to be made.
机译:在南极行星际磁场(IMF)的条件下,冬季极地电离层经历不规则发展,从而导致诸如跨电离层通信链路闪烁等后果。这些不规则性与对流极地电离层的对流保护有关。梯度漂移不稳定性(GDI)被认为是这些不规则现象或至少不规则波级联过程的长波能量源产生的主要候选者。犹他州立大学基于时间的电离层模型(TDIM)使极地电离层及其斑块能够随着时间的推移而被大规模建模。因此,在时空的每个点上,TDIM都有足够的信息来计算梯度漂移不稳定性的增长率。空间梯度基于92×92 km的TDIM网格分辨率,而时间分辨率可以短至30 s。在这项研究中,我们介绍了F区域GDI线性增长率计算的结果。首次显示了极地电离层瞬时GDI线性增长率的快照。这些部分显示了GDI与极地冠斑的相关性。然后,我们介绍了随着等离子体通量管对流,线性增长率的时间演化。结果表明,随着等离子对流模式响应于IMF条件的改变,等离子通量管实际上可以在对GDI不稳定和稳定之间变化。如果要评估等离子体通量管对梯度漂移机制是否稳定,这些对流结果是必不可少的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号